References

[1] H. S. Leff, G. L. Jones. Irreversibility, entropy production, and thermal efficiency. American Journal of Physics 43 (1975) 973-980.

 

[2] P. Salamon, A. Nitzan. B. Andresen, R. S. Berry. Minimum entropy production and the optimization of heat engines. Physical Review A 21 (1980) 2115-2129.

 

[3] P. Salamon, A. Nitzan. Finite time optimizations of a Newton’s law Carnot cycle. Journal of Chemical Physics 74 (1981) 3546-3560.

 

[4] P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry, B. Andresen. What conditions make minimum entropy production equivalent to maximum power production. Journal of Non-Equilibrium Thermodynamics 26 (2001) 73-83.

 

[5] R. K. Shah, T. Skiepko. Entropy generation extrema and their relationship with heat exchanger effectiveness—Number of transfer unit behavior for complex flow arrangements. Journal of Heat Transfer 126 (2004) 994-1002.

 

[6] X. Qian, Z. Li. Analysis of entransy dissipation in heat exchangers. International Journal of Thermal Sciences 50 (2011) 608-614.

 

[7] Q. Chen, J. Wu, M. Wang, N. Pan, Z. Y. Guo. A comparison of optimization theories for energy conversion in heat exchanger groups. Chinese Science Bulletin 56 (2011) 449-454.

 

[8] X. T. Cheng. Entropy resistance minimization: An alternative method for heat exchanger analyses. Energy 58 (2013) 672-678.

 

[9] Y. Haseli. Performance of irreversible heat engines at minimum entropy generation. Applied Mathematical Modeling 37 (2013) 9810-9817.

 

[10] Y. Haseli. Optimization of a regenerative Brayton cycle by maximization of a newly defined second law efficiency. Energy Conversion and Management 68 (2013) 133-140.

 

[11] X. B. Liu, J. A. Meng, Z. Y. Guo. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chinese Science Bulletin 54 (2009) 943-947.

 

[12] A. Bejan. Models of power plants that generate minimum entropy while operating at maximum power. American Journal of Physics 64 (1996) 1054-1059.

 

[13] A. Bejan. The equivalence of maximum power and minimum entropy generation rate in the optimization of power plants. Journal of Energy Resources Technology 118 (1996) 98-101.

 

[14] F. L. Curzon, B. Ahlborn. Efficiency of a Carnot engine at maximum power output. American Journal of Physics 43 (1975) 22-24.

 

[15] I. I. Novikov. The efficiency of atomic power stations. Journal of Nuclear Energy 7 (1958): 125-128.

 

[16] A. M. Y. Razak. Industrial Gas Turbines: Performance and Operability. Taylor & Francis Group, LLC., 2007.

 

[17] H. S. Leff. Thermodynamic entropy: The spreading and sharing of energy. American Journal of Physics 64 (1996): 1261-1271.

 

[18] F. A. Lambert. Disorder-a crack crutch for supporting entropy discussions. Journal of Chemical Education 79 (2002): 187-192.

 

[19] F. A. Lambert. Entropy is simple, qualitatively. Journal of Chemical Education 79 (2002): 1241-1246.

 

[20] Y. Haseli. Substance independence of efficiency of a class of heat engines undergoing two isothermal processes. Journal of Thermodynamics vol. 2011, Article ID 647937.

 

[21] R. Echigo. A note on the Carnot cycle and related thermodynamics. In: Proceedings of the 37th heat transfer symposium of Japan. Tokyo: Japan. Heat Transfer Society: 527–528, 2000.

 

[22] K. Kamiuto. Comparison of basic gas cycles under the restriction of constant heat addition. Applied Energy 83 (2006): 583-593.

 

[23] Y. Haseli. Optimum performance of a regenerative gas turbine power plant operating with/without a solid oxide fuel cell. Journal of Fuel Cell Science Technology 8 (2011): 051003/1-051003/9.

 

 

Introduction

Endo-reversible engines

Irreversible heat engines

Discussion

Conclusion

Nomenclature

References