References

[1] H. S. Leff, G. L. Jones. Irreversibility, entropy production, and thermal efficiency. American Journal of Physics 43 (1975) 973-980.

 

[2] P. Salamon, A. Nitzan. B. Andresen, R. S. Berry. Minimum entropy production and the optimization of heat engines. Physical Review A 21 (1980) 2115-2129.

 

[3] P. Salamon, A. Nitzan. Finite time optimizations of a Newton’s law Carnot cycle. Journal of Chemical Physics 74 (1981) 3546-3560.

 

[4] P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry, B. Andresen. What conditions make minimum entropy production equivalent to maximum power production. Journal of Non-Equilibrium Thermodynamics 26 (2001) 73-83.

 

[5] R. K. Shah, T. Skiepko. Entropy generation extrema and their relationship with heat exchanger effectiveness—Number of transfer unit behavior for complex flow arrangements. Journal of Heat Transfer 126 (2004) 994-1002.

 

[6] X. Qian, Z. Li. Analysis of entransy dissipation in heat exchangers. International Journal of Thermal Sciences 50 (2011) 608-614.

 

[7] Q. Chen, J. Wu, M. Wang, N. Pan, Z. Y. Guo. A comparison of optimization theories for energy conversion in heat exchanger groups. Chinese Science Bulletin 56 (2011) 449-454.

 

[8] X. T. Cheng. Entropy resistance minimization: An alternative method for heat exchanger analyses. Energy 58 (2013) 672-678.

 

[9] Y. Haseli. Performance of irreversible heat engines at minimum entropy generation. Applied Mathematical Modeling 37 (2013) 9810-9817.

 

[10] Y. Haseli. Optimization of a regenerative Brayton cycle by maximization of a newly defined second law efficiency. Energy Conversion and Management 68 (2013) 133-140.

 

[11] X. B. Liu, J. A. Meng, Z. Y. Guo. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chinese Science Bulletin 54 (2009) 943-947.

 

[12] A. Bejan. Models of power plants that generate minimum entropy while operating at maximum power. American Journal of Physics 64 (1996) 1054-1059.

 

[13] A. Bejan. The equivalence of maximum power and minimum entropy generation rate in the optimization of power plants. Journal of Energy Resources Technology 118 (1996) 98-101.

 

[14] F. L. Curzon, B. Ahlborn. Efficiency of a Carnot engine at maximum power output. American Journal of Physics 43 (1975) 22-24.

 

[15] I. I. Novikov. The efficiency of atomic power stations. Journal of Nuclear Energy 7 (1958): 125-128.

 

[16] A. M. Y. Razak. Industrial Gas Turbines: Performance and Operability. Taylor & Francis Group, LLC., 2007.

 

[17] H. S. Leff. Thermodynamic entropy: The spreading and sharing of energy. American Journal of Physics 64 (1996): 1261-1271.

 

[18] F. A. Lambert. Disorder-a crack crutch for supporting entropy discussions. Journal of Chemical Education 79 (2002): 187-192.

 

[19] F. A. Lambert. Entropy is simple, qualitatively. Journal of Chemical Education 79 (2002): 1241-1246.

 

[20] Y. Haseli. Substance independence of efficiency of a class of heat engines undergoing two isothermal processes. Journal of Thermodynamics vol. 2011, Article ID 647937.

 

[21] R. Echigo. A note on the Carnot cycle and related thermodynamics. In: Proceedings of the 37th heat transfer symposium of Japan. Tokyo: Japan. Heat Transfer Society: 527–528, 2000.

 

[22] K. Kamiuto. Comparison of basic gas cycles under the restriction of constant heat addition. Applied Energy 83 (2006): 583-593.

 

[23] Y. Haseli. Optimum performance of a regenerative gas turbine power plant operating with/without a solid oxide fuel cell. Journal of Fuel Cell Science Technology 8 (2011): 051003/1-051003/9.

 

 

Introduction

Endo-reversible engines

Irreversible heat engines

Discussion

Conclusion

Nomenclature

References

Power Cycle Modeling
Publications

If you have any comments or questions, please fill out the form below and hit the "send" botton.  

© 2016 HASELINNOVATION. All rights reserved.